EVN observations of weak blazars

F. Mantovani ^{1,2}, M. Bondi ², K.-H. Mack ²,

W. Alef¹, E. Ros¹, J.A. Zensus¹

¹ Max-Planck-Institut f
ür Radioastronomie, Bonn, Germany
 ² Istituto di Radioastronomia - INAF, Bologna, Italy

Blazars:	an extreme class of Active Galactic Nuclei FSRQs (high luminosity radio galaxies) BLLacs (low luminosity radio galaxies)
Characteristics:	high luminosity rapid variability high optical polarisation
Emission:	a broad continuum of non-thermal origin, extending from the radio wavelengths through gamma rays
Radio band:	flat radio spectra (α < 0.5) core-dominated objects apparent superluminal speeds
Gamma band:	vast majority of sources in the Fermi 2FGL catalogue
Interpretation:	based on bright and luminous sources discovered in radio or X-ray surveys

Any connection between radio and γ-ray emission ?

Radio emission: synchrotron radiation from relativistic electrons

γ-ray emission: low energy photons plus relativistic beaming → up-scattering of the photons (Inverse Compton)

Origin of gamma-ray emission ?

Fermi - Large Area Telescope

Single-Dish Monitoring Programmes

programme	freq. (GHz)	sampling	size	
OVRO	15	2-3 weeks	> 1000	
Effelsberg	2.6 - 43	monthly	≈ 60]	
IRAM	86 – 270	monthly	≈ 60	F-GAMMA
APEX	345	monthly	≈ 60	
UMRAO	4.8, 8, 14.5	15 days	35	
Metsähovi	37	monthly	≈ 100	
RATAN-600	1 – 22	2-4 weeks	600	

VLBI monitoring programmes

VLBA Monitoring at 43 GHz of EGRET blazars (Jorstad et al. 2001)
MOJAVE VLBA observations at 2 cm of 300 sources (Lister et al. 2009)
VISP VLBA Imaging and Polarimetry Survey at 5 GHz and 15 GHz survey of ~1100 AGN
TANAMI Tracking AGN with AU-SA array, 80 sources at 8.4GHz and 22GHz

Direct relation between the γ-ray and parsec-scale synchrotron radiation

Average *Fermi* LAT 100 MeV-1 GeV photon flux (Abdo et al. 2009) vs. quasi-simultaneous 15 GHz flux density. Filled circles: total VLBI flux density. Open circles single-dish flux density. (Kovalev et al. 2009 ApJ 696,L17)

Integrated 0.1–100 GeV *Fermi* photon flux vs. 15 GHz VLBA core flux density

(for data pairs in which the VLBA flux density measurement was taken 2.5 ± 0.2 months after the LAT flux measurements)

⁽Pushkarev et al. 2010 ApJ 722, L7)

Deep X-ray Radio Blazars Survey

(Perlman et al. 1998; Landt et al. 2001)

Cross-correlationROSAT sourcesWGCAT – White, Giommi, Angelini 1995and radio sources with flat radio spectra ($\alpha < 0.7$)

GB6 – Gregory et al. 1996 NORTH20CM – White and Becker 1992 PNM – Griffith and Wright, 1993

- flux density down to ~ 50 mJy at 5 GHz
- \blacktriangleright power down to $\sim 10^{24}$ W Hz $^{-1}$
- nearly complete optical identification
- includes both FSRQs and BL Lac sources
 234 quasars, 181 FSRQs, 53 SSRQs
 36 BL Lacs
 28 NLRG

"Weak blazars sample"

87 sources selected from the "Deep X-ray Radio Blazars Survey"

Selection criteria: Dec > -10 deg

Investigation:

> Effelsberg multi-frequency observations

> European VLBI Network 5 GHz observations

Source coordinates derived from NVSS and FIRST images

Main aims

- verify the spectral index classification
- make the first mas resolution observations
- do the observations while *Fermi* is making its survey
- make a comparison with samples of bright blazars (MOJAVE, TANAMI, etc ...)

Effelsberg observations

- ➢ 66 sources bona fide blazars
- 6 objects show an inverted spectra
- 27 sources show a steep spectum

- 9 sources show a GPS type spectral index
- 43 % show variability on a time scale of 20 years
- 36 sources are polarised at 5 GHz
- \succ 7 of them have | RM | > 200 rad m⁻²

Mantovani et al. 2011 A&A 533, 79

EVN observations

Frequency Stations Recording Strategy	5 GHz 12 512 Mbits, 5 scans, 6	2 bit samplin minutes long	g (~ 2.5 TBytes/station) each per source
Observations	EM077A EM077B EM077C EM077D EM077E EM077F EM097A EM097B	22 Oct 2009 30 May 2010 31 May 2010 23 Nov 2010 15 Dec 2010 31 May 2011 24 Feb 2013 27 May 2013	(e-VLBI correlation at JIVE) (e-VLBI correlation at JIVE)
Correlation	MPIfR DiF2 1 sec integ	X software correction time \rightarrow	orrelator field of view ~ 11"

Thanks to both the EVN-PC and the EVN Scheduler for their support

Results from the EVN observations

- All the 87 sources were detected
- > (S_{EVN} / S_{EF}) median $\approx 0.36 + 0.8$
- Structure: 45 core-jet
 39 point-like
 3 triples
- Tb in the range 10⁷ 10¹² K
 13 sources Tb > 10¹¹ K

Classification according to spectral index

Flat Spectra: 56 FSRQs and BLLacs (blazars) 2 NLRG

Steep Spectra: 10 SSRQs **10 Compact Steep-spectrum Sources** 2 BLLacs (optical identification questionable)

Convex Spectra: 6 Giga-Peaked Sources BLLac 1

(optical identification questionable)

CSSs and GPSs

X-ray ROSAT observations

 $< L_X > \approx 5 \times 10^{44} \text{ ergs/sec}$

 L_{χ} similar for CSSs and GPSs quasars

Column density (1 – 15) x 10²⁰ nH cm² ≈ Galactic nH

CSSs and GPSs quasars are not obscured by large column of cold gas surrounding their nuclei

15 DXRBS sources associated to *Fermi* γ-ray objects 50% are BLLacs

Name NVSS	Name 2FGL	2FGL R.A.rms	2FGL Dec.rms	Radio- γ Sep.	Association	γ -Var.	Radio-Var.
		arcmin	arcmin	arcmin			
J0204.8+1514	J0205.0+1514	8.1	6.5	2.7	4C15.05	Т	yes
J0510.0+1800	J0509.9 + 1802	6.5	5.1	1.7	PKS 0507+17	Т	no
J0847.2 + 1133	J0847.2 + 1134	5.3	4.6	0.8	RX J0847.1+1133		no
J0937.1 + 5008	J0937.6 + 5009	8.6	2.3	7.4	GB6 J0937+5008	Т	yes
J1010.8-0201	J1010.8-0158	8.3	7.7	4.1	PKS 1008-01		yes
J1204.2-0710	J1204.3 - 0711	8.0	6.9	1.8	1RXS J120417.0-070959		no
J1231.7+2848	J1231.7 + 2848	2.3	2.2	0.4	B2 1229+29	Т	no
J1332.7+4722	J1332.7+4725	13.6	13.1	10.4	B3 1330+476	Т	yes
J1656.8 + 6012	J1656.5 + 6012	8.4	7.7	4.5	87GB 165604.4+601702		yes
Name ATCA	Name 2FGL	2FGL R.A.rms	2FGL Dec.rms	Radio- γ Sep.	Association	γ -Var.	Radio-Var.
		arcmin	arcmin	arcmin			
J0448.2 - 2110	J0448.6 - 2118	14.8	10.3	9.9	PKS 0446-212		
J0449.4 - 4349	J0449.4 - 4350	1.2	1.1	1.1		Т	
J1610.3-3958	J1610.6 - 4002	18.5	11.5	6.1	PMN J1610-3958		
J1936.8-4719	J1936.8 - 4721	4.1	8.5	2.0	PMN J1936-4719		
$J_{2258.3-5525}$	J2258.8 - 5524	10.2	9.0	9.1	PMN 2258-5526		
J2330.6-3724	J2330.6-3723	7.1	6.5	0.5	PKS 2327-376		

12th EVN Symposium 7-10 October 2014 Cagliari

Summary

- All 87 target sources detected
- 56 Blazars
- 2 NLRGs
- 29 CSSs plus GPSs
- Tb in the range $10^7 10^{12}$ K
- CSSs and GPSs quasars are not obscured by cold gas surrounding the nuclei
- 15 sources are associated to γ-ray objects
- 50% of the associated objects are BL Lacs
- S_{core} and γ -ray photon flux correlation confirmed
- External Compton model might be ruled out

Many thanks for your attention

This work was supported by the:

- European Community Framework Programme 7 (2007-2013) under grant agreements no. 227290 and no. 283393
- COST Action MP0905 Black Holes in a Violent Universe

External Compton model (Dermer 1995)

 γ -ray emission boosted by a higher power of the Doppler factor than their radio emission ?

Synchrotron radiation beaming pattern α $\delta^{3+\alpha}$

External Compton-scattered photon $\alpha \delta^{4+\alpha}$ (accretion disk photon field)

It implies lower radio / gamma for higher Doppler factor

Fermi and the "Faint blazars sample"

~ 13 % of the DXRBS objects has been possibly detected by Fermi

Are they too few or are they too many ?

EGRET → 130 blazars detected

Number counts are Euclidean: N(>S) α S^{-1.5}

Fermi ~30 times more sensitive than EGRET \rightarrow 20,000 expected detection \leq 0.5 objects / deg ² ~ surface density in the Deep X-ray Radio Band Survey

List of SSRQs, CSSs and GPSs

Name	class	Max	min	P.A.		LS	EVN	ROSAT	X-Lumin	Col.Dens.	m	m	RM
		arcsec	arcsec	deg		$_{\rm kpc}$	struct	erg/cm ² /sec	erg/sec	$nH cm^2$	8.35	10.45	rad/m^2
J0015.5 + 3052	CSS?	$<\!16.7$	$<\!16.3$	_	Ν	$<\!\!87.5$	cj	2.82E - 13	5.09E45	5.74E + 20		< 1	14.4
J0126.2-0500	SSRQ	48.3	$<\!17.1$	43.3	Ν	156.9	cj	0.31E - 12	1.90 E44	4.08E + 20		< 1	
J0204.8+1514	CSS?	$<\!18.9$	$<\!16.8$	_	Ν	$<\!61.1$	р	2.60E - 13	1.54 E 4 4	5.53E + 20		< 1	62.9
J0227.5 - 0847	GPS	1.38	1.02	136.8	\mathbf{F}	5.4	р	0.22E - 12	8.76 E 45	3.39E + 20		< 1	
J0245.2+1047	BLLac	87.8	29.4	-36.0	Ν	79.6	р	7.80E-13	9.39E42	10.20E + 20		< 1	
J0304.9+0002	SSRQ	8.12	4.14	162.1	\mathbf{F}	32.9	cj	4.02E - 13	5.27 E44	6.51E + 20		< 1	
J0421.5 + 1433	BLLac	67.9	18.5	66.6	Ν	265.7	р	3.51E - 14	3.45 E 43	15.90E + 20	10.8		-68.6
J0435.1-0811	GPS	21.2	$<\!17.2$	31.6	Ν	95.6	cj	1.26E - 13	3.81 E 4 4	6.17E + 20		< 1	
J0447.9-0322	CSS?	$<\!18.2$	$<\!16.0$	_	Ν	$<\!\!81.2$	cj	1.38E - 12	3.96 E 45	3.80E + 20		< 1	
J0518.2 + 0624	CSS?	$<\!18.8$	$<\!17.5$	_	Ν	$<\!\!86.6$	р	9.69E - 14	3.94 E 4 4	12.00E + 20	2.6		95.4
J0931.9 + 5533	GPS	23.8	18.9	64.4	\mathbf{F}	65.8	cj	0.43E - 12	9.56E43	2.22E + 20		< 1	
J1006.1+3236	CSS	3.38	1.91	132.1	\mathbf{F}	15.9	cj?	0.43E - 12	2.45 E 45	1.47E + 20		< 1	
J1101.8+6241	CSS	1.89	0.75	13.7	\mathbf{F}	7.4	р	0.46E - 12	9.00 E44	0.90E + 20		< 1	-8.1
J1116.1+0828	GPS	0.68	0.49	31.3	\mathbf{F}	2.4	р	0.22E - 12	2.02 E44	2.85E + 20		< 1	
J1213.2+1443	SSRQ	9.27	8.20	12.3	\mathbf{F}	37.2	\mathbf{t}	0.48E - 12	1.14E45	2.82E + 20	< 1		
J1224.5+2613	SSRQ	14.08	10.28	118.9	\mathbf{F}	55.8	р	1.04E - 13	2.22E44	1.77E + 20	< 1		
J1225.5+0715	SSRQ	7.17	3.55	46.9	\mathbf{F}	30.8	р	0.84E - 13	6.05 E44	1.72E + 20		< 1	
J1404.2+3413	SSRQ	22.3	$<\!18.7$	5.8	Ν	94.3	cj	0.78E-13	3.60 E44	1.23E + 20		< 1	
J1406.9+3433	GPS	0.87	0.35	11.9	\mathbf{F}	3.3	cj	0.11E - 12	6.13E45	1.31E + 20		< 1	
J1420.6+0650	CSS	0.85	0.0	179.4	\mathbf{F}	2.0	cj	0.33E-12	5.58E43	2.18E + 20			
J1427.9+3247	GPS	3.42	3.05	26.9	\mathbf{F}	12.8	cj	0.38E - 12	5.09E44	0.97E + 20	4.5		0.5?
J1442.3+5236	CSS	4.80	1.21	119.1	\mathbf{F}	20.0	cj	0.14E - 12	3.29E45	1.46E + 20		< 1	
J1507.9 + 6214	CSS	2.30	1.21	2.7	\mathbf{F}	9.8	cj	0.12E - 12	1.73E45	1.55E + 20		< 1	
J1539.1 - 0658	BLLac	1.02	0.61	81.2	\mathbf{F}	3.6	cj	0.70E-13	6.88E43	9.02E + 20	< 1		
J1629.7+2117	CSS?	$<\!17.1$	$<\!15.6$	_	Ν	$<\!71.0$	cj	0.14E - 12	4.82 E 4 4	4.11E + 20	< 1		
J1722.3+3103	SSRQ	42.48	13.63	104.0	\mathbf{F}	117.4	cj	0.16E - 12	4.88 E 43	3.15E + 20	< 1		
J1804.7+1755	SSRQ	40.30	$<\!19.6$	36.3	Ν	65.6	р	0.11E-12	7.74E43	8.27E + 20	< 1		
J2322.0+2114	SSRQ	75.2	$<\!17.5$	57.3	Ν	300.4	р	1.49E - 13	3.42E44	4.47E + 20	< 1		
J2347.6+0852	SSRQ	42.7	21.5	-34.9	Ν	115.5	р	6.40E-13	1.76E44	5.75E + 20	2.8		

Sources structure and radio spectral index

Structure	Steep	Ultra Steep	Steep-flat	Flat-Steep	Flat	GPS	Inverted	Not available
	$\alpha \leq -0.5$	$\alpha < -0.7$						
Point	4 (1)	6 (1)	9(1)	1	13(2)	2	5	1
Core-Jet	3	8	5(1+1NLRG)	3 (1)	18 (3+1NLRG)	5(1)	1	-
Triple	-	1	2	_	-	_	-	-

